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Inflation Risks in Israel 

 

Michael Gurkov and Osnat Zohar  

 

Abstract 

We examine how inflation risks in Israel evolved over time. We find that until 2013, 

inflation uncertainty was stable, and risks were moderately skewed downwards. However, 

since 2014, uncertainty decreased, and downside risks to inflation became much more 

dominant. The model attributes these developments to the decline in the inflation 

environment, as it is captured by realized inflation and long-term expectations, and to 

changes in oil prices. However, we cannot rule out that the monetary rate approaching the 

effective lower bound also contributed to these changes. 

 

Keywords: inflation at risk, density forecasts, quantile regressions, effective lower 

bound. 
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 סיכוני האינפלציה בישראל

 מיכאל גורקוב ואסנת זהר 

 

 תקציר

אנו בוחנים כיצד התפתחו סיכוני האינפלציה בישראל מאז אימוץ טווח יעד האינפלציה הנוכחי בעזרת 

מידת אי הוודאות לגבי האינפלציה  2013מודל להתפלגות תחזית האינפלציה. אנו מוצאים כי עד שנת 

אי הוודאות פחתה אך  2014זאת, מאז  הייתה יציבה והסיכונים היו מוטים מעט כלפי מטה. עם

הסיכונים כלפי מטה הפכו דומיננטיים יותר. המודל מייחס התפתחויות אלו לירידה בסביבת 

האינפלציה, כפי שהיא נתפסת על ידי האינפלציה בפועל והציפיות לטווח ארוך, וכן לשינויים במחירי 

ריבית המוניטרית למחסום האפקטיבי הנפט. עם זאת, איננו יכולים לשלול כי גם התקרבותה של ה

 .שלה תרמה להתפתחויות אלו

 



1 Introduction

The adoption of the current inflation target range in Israel (1–3%) in 2003 was followed

by a decade of stable inflation with an average of about two percent (Figure 1). However,

since the mid-2010s, inflation declined for several years, reaching a negative territory. As

illustrated in Figure 1, the decline was accompanied by a decrease in the standard deviation

of inflation. These changes in the statistical properties of inflation may indicate that the

risks to inflation have changed.

The purpose of this paper is to evaluate how risks to inflation evolved over time and

what fundamentals of the economy drove their evolution. To answer these questions, we

estimate the distribution of CPI inflation twelve months ahead, conditional on current real

and nominal conditions. We adopt a similar approach to Banerjee et al. (2020) and López-

Salido and Loria (2020), and employ a conventional Philips curve model to forecast the

distribution of future inflation using quantile regressions.

The estimated quantiles allow us to characterize central features of the forecast distribu-

tion, which capture the main attributes of risks to inflation. First, we examine the dispersion

of the forecast distribution, which captures forecast uncertainty. Second, we construct a mea-

sure for the distribution skewness, which captures the balance between upside and downside

risks to inflation.

We find that in the decade following the adoption of the 1–3% target range, uncertainty

was stable, and inflation risks were moderately skewed downwards; namely, the dispersion

of the distribution was stable, and the skewness was slightly negative. However, in 2014,

uncertainty decreased, and downside risks became more dominant. Namely, the dispersion

and skewness of the distribution declined. Since 2016, realized inflation gradually increased,

and simultaneously, both these measures gradually returned to their long-term averages.

Examining the explanatory variables in our model, we find that the changes in the distri-

bution of inflation since 2014 are mainly due to the decrease in the inflation environment, as

it is reflected in realized inflation and long term expectations, and the changes in oil prices

at that time.

In 2014 the monetary rate in Israel reached an all-time low, and non-conventional mone-

tary tools were put into use (e.g., forward guidance and foreign exchange interventions). The

fact that the monetary rate was approaching the effective lower bound (ELB) may explain

why downside risks to inflation became more dominant in these years, as reacting to lower

inflation rates was more limited. To test this hypothesis, we re-estimate our model and

account for the ELB period using a dummy variable. While the enhancement in downside

risks is more moderate in this estimation, the dummy for the ELB accounts for most of it.
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Figure 1: Year-over-Year CPI Inflation Excluding Fruits, Vegetables, and Housing (Monthly,
2004-2019)

Notes: The figure shows year-over-year CPI inflation rates excluding fruits, vegetables, and housing. It also
shows the moving average and variance of inflation rates in a 48-month rolling window.

Furthermore, it accounts for a large share of the decline in uncertainty. Thus, we cannot rule

out that the monetary rate approaching the ELB had a substantial effect on the forecast

distribution of inflation.

We evaluate the model’s forecast performance as it would have been used in real-time

by generating out-of-sample forecasts on an expanding window. The model’s performance

is compared to two restricted models containing (1) only an intercept; (2) an intercept and

realized inflation. We evaluate the predictive quality of these forecasts using two measures

designed to assess density forecasts. First, following Rossi and Sekhposyan (2019), we an-

alyze the fraction of observations that fall below each quantile (the empirical cumulative

distribution of the probability integral transform). Second, we use the quantile R-squared

score proposed by Giglio et al. (2016). Both measures indicate that the unrestricted model

outperforms the two benchmarks along most of the distribution. Admittedly, the unrestricted

model does not improve upon the restricted ones in capturing upside risks to inflation; how-

ever, all three models have poor performance in this area. Furthermore, we find that the

unrestricted model is the only one that cannot be rejected as capturing the cumulative

distribution of inflation using the test by Rossi and Sekhposyan (2019).

The merits of quantile regressions as a tool for risk assessment were proposed by Adrian

et al. (2019) who examine the role of macro and financial variables in explaining the forecast

distribution of GDP growth. Their model was employed for several economies (Aikman
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et al., 2018, 2019; Alessandri et al., 2019), and specifically for Israel (Gurkov and Zohar,

2022). The methodology employed in this paper benefits from the same merits, but it has

the advantage of being based on more solid theoretical foundations, namely, the Philips

curve model. Nonetheless, it is important to note that while the Philips curve model has

well-founded theoretical grounds for explaining mean inflation rates, its role in explaining

higher moments of the distribution has so far remained unexplored. The empirical work in

this paper, which joins evidence of similar models for other countries (Banerjee et al., 2020;

López-Salido and Loria, 2020; Tagliabracci, 2020), may form a basis for future theoretical

work to identify the mechanisms through which different fundamentals affect the distribution

of inflation.

2 Data and Methodology

To examine the fundamental drivers of risks to inflation, we focus on CPI, excluding fruits,

vegetables, and housing.1 The methodology is based on a Philips curve model. However, it

is estimated by quantile regressions to study the distribution of inflation. For each quantile

τ , denote by Qτ
t the τ -quantile of year-over-year CPI inflation in month t. We estimate the

following model, which we name Inflation at Risk (IaR):

Qτ
t+12 = βτXt + ǫτt , (1)

Xt =
[

1, πt, π
e
t , ŷt, oilt, st

]′

,

where

• πt is the year-over-year CPI inflation excluding fruits, vegetables, and housing in month

t (Figure 1).

• πe
t is the monthly average of five-year five-year forward breakeven inflation rates.

• ŷt is a monthly estimate of the output gap (HP filtered State-of-the Economy Index

(Marom et al., 2003))

• oilt is the month-over-month percentage change in Brent Crude oil prices, denominated

in USD.

1The reason for excluding fruits and vegetables is that this component of the CPI is very volatile and
unrelated to the fundamentals of the economy. Excluding housing prices is conducted to overcome the
structural change in this component, following the reduction of housing contracts denominated in US dollar
since 2007 (Binyamini et al., 2008). Appendix A provides robustness for our main results using headline
inflation on a sample starting in 2007.
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• st is the month-over-month percentage change in the NIS-USD exchange rate.

The selection of explanatory variables generally follows Banerjee et al. (2020). However,

we add long-term inflation expectations as in López-Salido and Loria (2020). This variable

captures the forward-looking behavior of firms in the economy. We focus on long-term rather

than short-term expectations that are more common in standard Philips curve models since

we are interested in fundamental drivers of inflation risks. While short-term expectations

are by themselves affected by the other fundamentals in our model, long-term expectations

mainly capture the nominal anchor as the public perceives it.2

The model is estimated on monthly data for the period 2004-2019. The sample begins

after the disinflation process in Israel, namely, after the adoption of the 1–3% target range,

and ends before the COVID19 crisis. Figure 2 shows the estimated coefficients for each

quantile, together with OLS coefficients for comparison.

The coefficients of CPI inflation are positive at around 0.2-0.4 and generally statistically

significant, owing to the persistence of inflation. Long-term inflation expectations have a

positive effect in most quantiles, but the slope equality test (Bassett and Koenker, 1982)

shows that they are significantly different across quantiles (equality is rejected at a 1%

significance level).3 In fact, the coefficients decrease in the quantiles; namely, expectations

have a more substantial effect on lower quantiles than on the higher quantiles. As discussed

in the following section, this feature bears implications for the expectations’ effect on the

balance of risks to inflation. Throughout the sample, expectations displayed a downward

trend. The estimated coefficients imply that it led to a sharper decline in the lower quantiles

of inflation, while the effect on upper quantiles was much smaller. Namely, the decline in

expectations is associated with increased downside risks to inflation.

Oil prices also have a more substantial effect on the lower quantiles of inflation than on

the higher ones. Thus, a one percent drop in oil prices is reflected in a decrease of about

0.04 percentage points in the median and lower inflation scenarios, with almost no change

in the higher quantiles. Namely, large drops in oil price, such as those that occurred in

2008 or 2014, broadened the gap between the upper tail of the forecast distribution and its

mid-to-lower part. Thus, they increased forecast uncertainty while enhancing upside risks

2It is not straightforward why expectations should be included in a model that aims to explain future
inflation. For example, a standard Philips curve model under rational expectations implies that expected
inflation should only depend on realized variables (expected inflation “cancels out” from the right-hand side
of the equation). However, our model deals with the entire distribution of future inflation and not just its
mean. Furthermore, we cannot argue that our model’s forecasts are consistent with the market’s and that
both coincide with rational expectations. Thus, we cannot rule out expected inflation as an explanatory
variable in our model.

3For the other coefficients, we cannot reject equality across quantiles at any conventional significance
level.
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Figure 2: Quantile Regression Coefficients

Notes: Each column shows the estimated coefficients from the quantile regression (1). Red bars mark
coefficients that are significant at 10% (see Koenker, 1994). Dashed lines show the OLS estimates of
Equation (1).

6



to inflation.

Our estimate for the effect of oil prices on the median scenario (0.04) is similar to the OLS

estimate and the pass-through estimated by Kozin (2019). Furthermore, the effect of the

exchange rate is also similar to the pass-through in Kozin (2019): a one percent depreciation

of the Shekel against the USD increases the median forecast of inflation by 0.08 percentage

points.

As for the output gap, its coefficients are negative and mostly significant. This result is in

contrast to the predictions of standard Philips curve models. To reconcile this contrast, note

that the IaR model refers to inflation twelve months ahead, while standard Philips curve

models examine higher frequency dynamics of inflation. Figure 13 in the Appendix shows

the estimated coefficients of Equation (1) at the one-month horizon, which is similar to a

standard Philips curve model. Indeed, we find that the output gap has small and positive

coefficients at the shorter horizon, as also found in previous estimates4. Thus, the negative

coefficients that we find for the twelve-month horizon may originate from the auto-regressive

properties of the output gap. In fact, in our sample, the autocorrelation of the output gap

with its twelve-month lag is -0.17 (p = 0.04). Together, these results imply that while the

output gap may not strongly affect inflation in the short run, its cumulative effect over twelve

months is significant.

3 Features of the Forecast Distribution

Figure 3 shows quarterly averages of the twenty-fifth, fiftieth, and seventy-fifth quantiles of

inflation one year ahead. Not only do the estimated quantiles change over time, but their

relative location also varies; namely, the characteristics of the distribution change over time.

A notable change occurs at the beginning of 2014 when all three quantiles drop substan-

tially. However, they do not drop to the same extent. First, the upper quantile drops more

substantially than the lower one. Consequently, the width of the band that covers fifty per-

cent of the distribution shrinks from about 1.5 percentage points in early 2014 to about one

percentage point in mid-2016. If we consider this band to cover the central expected infla-

tion scenarios, then their dispersion decreases in that period. Namely, the central scenarios

become more concentrated, and uncertainty about future inflation decreases. Second, the

median scenario’s drop is the mildest, so the upper quantile approaches the median, and the

lower quantile becomes more distant. This development indicates that inflation rates lower

than the median become more likely than higher rates, namely, downside risks to inflation

4Using various specifications, Box 3.2 in the Bank of Israel Annual Report (2016) finds a coefficient of
approximately 0.1 on the output gap, similarly to our estimate at the one-month horizon.
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Figure 3: Quantiles of Inflation Twelve Months Ahead (Quarterly Averages)

intensify.

Next, we turn to a more formal assessment of the distribution features and their evolution

over time. Specifically, we focus on the dispersion of the distribution, which captures forecast

uncertainty, and on its skewness, which summarizes the balance between upside and downside

risks.

Uncertainty (Dispersion of the Distribution): To evaluate forecast uncertainty, we

examine the dispersion of the forecast distribution. Our proxy for the dispersion is the

inter-quartile range of the distribution:

Dispersiont ≡ Q0.75
t −Q0.25

t .

Balance of Risks (Skewness of the Distribution): To evaluate the balance of upside

and downside risks, we examine the skewness of the forecast distribution as captured by the

“quartile skewness”:

Skewnesst =
Q0.75

t +Q0.25
t − 2Q0.50

t

Dispersiont

.

Figure 4 shows the evolution of the dispersion and skewness over time. During the global

financial crisis, both the dispersion and the skewness of the distribution rose. Namely, the

crisis was characterized by increased uncertainty and a relative rise in upside risks to inflation.

The co-movement of the two indicators is also apparent in 2014 when both declined. In that
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Figure 4: High Moments of the Forecast Distribution

A. Dispersion B. Skewness

Notes: Blue horizontal lines show sample means. In Panel B, the dashed lines represent ±2SES, where

SES is an estimate of the standard deviation of sample skewness (SES =
√

6N(N−1)
(N−2)(N+1)(N+3) , where N is

the sample size).

period, uncertainty decreased together with a relative rise in downside risks.

Figure 5 compares the dispersion and skewness measures from the IaR model to equivalent

measures derived from the Bank of Israel’s survey of professional forecasters.5 In Panel A, we

show the standard deviation of the forecaster’s point estimates, and in Panel B, we show a

measure of skewness based on the gap between the mean point forecast and the median. The

correlation between the IaR measures and the survey-based measures are about 0.2, both

in the dispersion and in the skewness. Both sources indicate an increase in the dispersion

and skewness around the 2008 crisis, and a decrease in both during the second decade of the

millennium.

To understand what drives forecast uncertainty and risk balance in the model, Figure 6

shows the correlations matrix between the median, dispersion, skewness, and explanatory

variables. The dispersion and skewness of the distribution are highly correlated. Namely, in

general, higher uncertainty is associated with increased upside risks. Examining the correla-

tions of the distribution features with the explanatory variables shows that the realization of

inflation is a primary determinant of the forecast distribution, as its correlation with all the

distribution features exceeds 0.4. Changes in oil prices also play an essential role, as they

5Professional forecasters report point forecasts for inflation one year ahead. We use these forecasts to
construct the measures of dispersion and skewness. Thus, these measures refer to the distribution of point
forecasts and not necessarily to the distribution of future inflation. For example, dispersion of point forecasts
may originate from forecasters holding different information or using different models. However, there is
empirical evidence, supported by theoretical models, that the distribution of point forecasts is related to the
distribution of the underlying variable (Zohar (2021) and references therein).
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Figure 5: Alternative Measures of Uncertainty and Risk Balance (Quarterly Averages)

A. Dispersion B. Skewness

Notes: The figure shows the dispersion and skewness measures from the IaR model alongside equivalent
measures based on the Bank of Israel’s survey of professional forecasters. Panel A shows the standard
deviation of twelve-months-ahead point forecasts. Panel B shows a survey-based skewness measure:
3
[

Mean(fi)−Median(fi)
]

/STD(fi), where {fi} is the set of twelve-months-ahead inflation forecasts.

are associated with higher median forecasts and lower uncertainty and skewness.

While Figure 6 summarizes the correlation between the main features of the distribution

and the explanatory variables, we can also examine how each variable affected the distribu-

tion throughout the sample. Note that

E
(

Dispersiont+12

∣

∣Xt

)

= (β0.75 − β0.25)Xt,

E
(

Skewnesst+12

∣

∣Xt, Dispersiont+12

)

=
(β0.75 + β0.25 − 2β0.50)Xt

Dispersiont+12

.

Thus, the contribution of the ith variable to the forecast uncertainty is (β0.75
i − β0.25

i )xi,t

and its contribution to the skewness (conditional on the uncertainty level) is
(β0.75

i
+β0.25

i
−2β0.50

i
)xi,t

Dispersiont+12
.

Figure 7 shows the contribution of each variable to the dispersion and skewness over

time.6 The changes in the dispersion and skewness since 2014 are mainly due to the decrease

in the inflation environment, as it is reflected in realized inflation and long-term expectations,

and to changes in oil prices.

6Note that the contribution of the intercept is not constant over time because each contribution consists
of a division by the dispersion in that period.
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Figure 6: Correlations between Features of the Forecast Distribution and the Explanatory
Variables

4 Accounting for the Effective Lower Bound of the

Monetary Rate

Our baseline estimation shows that the dispersion and skewness of the forecast distribution

decreased since 2014, and this is mainly due to the decrease in the inflation environment

and changes in oil prices. However, it is important to note that during 2014, the monetary

rate in Israel reached an all-time low, and non-conventional monetary tools were employed

(e.g., forward guidance and foreign exchange interventions). The fact that the monetary

rate was approaching the effective lower bound (ELB) may have played an important role

in the change in the forecast distribution. Specifically, it can explain why downside risks to

inflation became more dominant in these years since the Monetary Policy Committee was

more restrained in reacting to lower inflation rates.

To assess what role the ELB played in generating our results, we estimate a variant of

Equation (1) that includes interactions of all variables with a dummy variable for the ELB

period. We define the beginning of the ELB period as September 2014, when the monetary

rate was lowered to 0.25. At the time, this was the lowest level the monetary rate had ever

reached, even though it was later lowered to 0.1. Since the monetary rate was no higher

than 0.25 from that point to the end of our sample, we define the ELB period as 09/2014 to

12/2019.

When accounting for the ELB period, we find that the dispersion of the forecast distri-

bution declined since 2014, as in the baseline estimation (Figure 8). However, the skewness

11



Figure 7: Variable Contribution to Dispersion and Skewness
(Deviations from Mean, Quarterly Averages)

A. Dispersion B. Skewness

Notes: Stacked bars in Panel A show each variable’s contribution to the forecast’s dispersion,
(β0.75

i − β0.25
i )xi,t, minus its average contribution in the sample. In Panel B, they show each variable’s

contribution to the skewness conditional on the dispersion, (β0.75
i + β0.25

i − 2β0.50
i )

xi,t

Dispersiont+12
, minus its

average contribution in the sample. The solid line in each panel shows the dispersion and skewness’s
deviation from their mean.
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Figure 8: Accounting for the ELB: Variable Contribution to Dispersion and Skewness
(Deviation from Mean, Quarterly Averages)

A. Dispersion B. Skewness

Notes: Stacked bars in Panel A show each variable’s contribution to the forecast’s dispersion,
(β0.75

i − β0.25
i )xi,t, minus its average contribution in the sample. In Panel B, they show each variable’s

contribution to the skewness conditional on the dispersion, (β0.75
i + β0.25

i − 2β0.50
i )

xi,t

Dispersiont+12
, minus its

average contribution in the sample. We sum the contribution of each variables and its interaction with the
ELB dummy. The solid line in each panel shows the dispersion and skewness’s deviation from their mean.

of the distribution only mildly decreased in that period.

Figure 8 shows the contribution of each variable to the dispersion and skewness. For each

variable, we sum its contribution before the ELB period and after it. Namely, we sum the

contributions of the variable and its interaction with the ELB dummy. The figure shows that

the inflation environment is still an important contributor to the decrease in the dispersion,

but oil prices no longer seem to have an important role. Furthermore, the dummy variable for

the ELB period, which is captured by the intercept variable, also contributes substantially

to the dispersion’s decline.

As for the skewness, it seems that the ELB dummy contributes substantially to its decline.

This is expected as the ELB limits the possibility to react to low inflation rates using the

monetary rate and thus enhances downside risks. However, it seems that expectations have

a positive effect that almost completely offsets the negative effect of the ELB, so overall

skewness decreased only mildly.
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Altogether, we find that our main results hold, namely, that the dispersion and skewness

of the forecast distribution declined since 2014. However, the decline in the skewness is much

milder than in the baseline estimation. Furthermore, the dummy variable for the ELB period

has a substantial explanatory power for these changes, while the inflation environment and

oil prices play only a secondary role. It is important to note that the ELB dummy may be

capturing downward trends in the inflation environment or oil prices, thus taking on some

of their explanatory power. However, we cannot rule out that the changes in the features of

the forecast distribution were caused by the interest rate approaching the ELB.

5 Out-of-Sample Forecast Performance

In this section, we evaluate the model’s out-of-sample forecast performance. We compare

the IaR model to two restricted models: (1) a model containing only an intercept; (2) a

model containing an intercept and realized inflation.

We evaluate the performance of all three models as they would have been used in real-

time. We generate out-of-sample forecasts for CPI inflation quantiles on an expanding win-

dow, with an initial window of eleven years (Jan-2004 – Jan-2015).7 Specifically, the IaR

forecasts for period t are generated by performing the methodology of Section 2 on the

sample ending in period t − 12 (Figure 9). Similarly, the benchmark forecasts generated

by estimating restricted versions of Equation (1) on the same window (Figure 14 in the

Appendix).

Next, we evaluate the predictive quality of the models using two measures designed

to assess density forecasts. First, following Rossi and Sekhposyan (2019), we analyze the

fraction of observations that fall below each quantile. Second, we use the quantile R-squared

score proposed by Giglio et al. (2016).

The first forecast evaluation is based on the probability integral transform (PIT). For

each quantile τ , we compute the empirical cumulative distribution of the PITs, which is the

percentage of observations that fall below the forecast quantile Q̂τ
t :

ϕ(τ) ≡
1

T − t0 + 1

T
∑

t=t0

I{πt<Q̂τ
t }
,

where Q̂τ
t are forecasts of the relevant model for period t (estimated on the sample ending

in period t− 12), t0 is the first out-of-sample forecast date (Jan-2016 in our case), T is the

sample size, and I is the indicator function. A model is better fitted the closer ϕ(τ) is to

7We choose an initial window that contains the structural change we found in Section 3.
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Figure 9: Out-of-Sample Forecasts and Realized CPI Inflation

Notes: The figure shows the median out-of-sample forecast of the IaR model estimated twelve months
before the marked date (black line) together with the corresponding realized inflation (red line). The grey
areas show the 80% and 50% bands based on the IaR model.

the 45-degree line. If the model perfectly fits the empirical cumulative distribution and the

sample is large enough, then the fraction of observations falling below quantile τ should be

exactly τ , namely, ϕ(τ) = τ .

Panel A in Figure 10 shows the ϕ scores of the IaR model and the two benchmark models,

together with 95% confidence bands (Rossi and Sekhposyan, 2019). The IaR model is the

only one that lies inside the confidence band in all quantiles. Thus, the restricted models

are rejected for capturing the true commutative distribution, while the IaR model is not.

Furthermore, the IaR model outperforms the two benchmarks in most quantiles. Note that

all three models have poor performance in the ninetieth quantile, as a hundred percent of the

observations fall below the forecasts for this quantile. Namely, none of the models identifies

upside risks well.

The assessment based on the PITs gives a relatively rough estimate of the forecast perfor-

mance, as it only addresses the question of whether realized inflation fell above or below the

forecast of a specific quantile. The second measure we use, quantile R-squared (Giglio et al.,

2016), places more emphasis on the distance between the realized value and the quantile

forecasts, namely, the forecast errors. It compares these errors to those generated by the

restricted model containing only an intercept. For each quantile τ , we look at a weighted

average of forecast errors
∣

∣

∣
πt − Q̂τ

t

∣

∣

∣
, and compare it to a similar weighted average of the
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Figure 10: Evaluation of Out-of-Sample Forecast Accuracy

A. Probability Integral Transform (PIT) B. Quantile R-Squared

Notes: Panel A depicts the empirical cumulative distribution of the probability integral transform (PIT),
i.e., the share of observations that fall below each forecast quantile. The 45-degree black line is added for
reference, and dashed lines represent the 95% confidence bands following Rossi and Sekhposyan (2019).
Panel B depicts the quantile R-squared scores. In both panels, the scores of the Inflation at Risk model
appear alongside a restricted model containing only an intercept and CPI inflation. Panel A also shows the
performance of the third model - a restricted model containing only an intercept - which is already inherent
in the R-squared score.

forecast errors from the “intercept only” model:

R2(τ) ≡ 1−

∑T

t=t0

(

πt − Q̂τ
t

)(

τ − I{πt<Q̂τ
t }

)

∑T

t=t0
(πt − ĉτt )

(

τ − I{πt<ĉτt }

) ,

where ĉτt are the forecasts from the “intercept only” model. Note that forecast errors are

weighted according to the quantile in question. For example, the 0.10 quantile R-squared

weighs positive forecast errors by 0.10 and negative errors by 0.90, heavily penalizing realiza-

tions that fall below the quantile forecast. Higher R-squared values express better forecast

performance compared to the “intercept only” benchmark. Conversely, negative values in-

dicate that the model’s accuracy falls short of that benchmark.

Panel B in Figure 10 shows R-squared scores of the Inflation at Risk and “CPI only”

models. The IaR scores are positive in all quantiles but 0.90, so the model improves upon

the “intercept only” benchmark up to this quantile. Furthermore, in the same region, the

IaR scores are higher than those of the “CPI only” benchmark. Namely, the IaR model

outperforms the two benchmarks in all quantiles but the ninetieth quantile.
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6 Conclusion

The decade following the adoption of the current inflation target range (1–3%) was character-

ized by inflation varying around the middle of the range. However, since 2014 the statistical

properties of inflation changed: both its mean level and volatility have declined. The IaR

model proposed in this paper allows us to characterize if and how these observed develop-

ments reflect changes in the distribution of inflation. Furthermore, the model identifies the

fundamentals of the economy that contributed to these changes.

Using the model, we find that the decline in inflation since 2014 was associated with

a decline in uncertainty and a relative rise in downside risks to inflation. The decline in

long-term expectations and changes in oil prices also played a prominent role in these devel-

opments. Other determinants of inflation, namely, the output gap and exchange rate, played

only a minor role in the evolution of the distribution of inflation at the time.

We also find that the monetary rate approaching its effective lower bound since 2014 may

have contributed to the changes in the risks to inflation. Specifically, it may have enhanced

downside risks since reacting to lower inflation rates is more limited around the ELB.

While the main focus of this paper is the characterization of historical risks to inflation,

the IaR model can also be used to assess inflation risks regularly. Its main advantage is in

offering state-dependent assessments of risks, and the out-of-sample evaluation shows that

it performs well compared to other, more parsimonious benchmarks.
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Appendix

A Headline Inflation

In the baseline model, we estimated the forecast distribution of CPI since the entrenching

of the current inflation target in 2004. However, we used a partial consumer price index,

excluding fruits, vegetables, and housing. We excluded fruits and vegetables since their

prices are very volatile and unrelated to the fundamentals of the economy. Housing prices

were excluded to overcome the structural change in this component, following the reduction

of housing contracts denominated in US dollar since 2007 (Binyamini et al., 2008). This

omission allowed us to maximize the sample size without directly dealing with the structural

change. A large sample improves the estimation of quantile regressions and the identification

of risks to inflation.

However, since the Bank of Israel targets headline inflation, this section analyzes its

forecast distribution. To deal with the issue of the structural change in housing contracts

mentioned above, we begin our sample when the shift toward Shekel-denominated contracts

began. Namely, we estimate the model for the period of 2007-2019.

Figure 11 shows that the forecast distribution of headline inflation also exhibited a decline

18



Figure 11: Headline Inflation: Variable Contribution to Dispersion and Skewness
(Deviation from Mean, Quarterly Averages)

A. Dispersion B. Skewness

Notes: Stacked bars in Panel A show each variable’s contribution to the forecast’s dispersion,
(β0.75

i − β0.25
i )xi,t, minus its average contribution in the sample. In Panel B, they show each variable’s

contribution to the skewness conditional on the dispersion, (β0.75
i + β0.25

i − 2β0.50
i )

xi,t

Dispersiont+12
, minus its

average contribution in the sample. The solid line in each panel shows the dispersion and skewness’s
deviation from their mean.
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Figure 12: Headline Inflation: Evaluation of Out-of Sample Forecast Accuracy

A. Probability Integral Transform (PIT) B. Quantile R-Squared

Notes: Panel A depicts the empirical cumulative distribution of the probability integral transform (PIT),
i.e., the share of observations that fall below each forecast quantile. The 45-degree black line is added for
reference, and dashed lines represent the 95% confidence bands following Rossi and Sekhposyan (2019).
Panel B depicts the quantile R-squared scores. In both panels, the scores of the Inflation at Risk model
appear alongside a restricted model containing only an intercept and CPI inflation and alongside the
DSGE model (this model is quarterly so the confidence interval of Panel A is irrelevant to it, see Footnote
9). Panel A also shows the performance of the forth model - a restricted model containing only an
intercept - which is already inherent in the R-squared score.

in the dispersion and skewness since 2014. However, compared to the baseline model, the

decline in the dispersion was more persistent, while the decline in skewness was shorter-lived.

Furthermore, as in the baseline model, the inflation environment (realized and expected

inflation) played an essential role in these changes.

The headline inflation IaR model may be more suitable for regular analysis of risks to

inflation as it tracks the Bank of Israel’s primary variable of interest. Therefore, we also

examined the performance of the out-of-sample forecasts of this model. Panel A in Figure

12 shows that the IaR model’s PIT scores lie inside the 95% confidence band in all quantiles,

while the restricted models deviate from it. Thus, as in the baseline estimation, the IaR

model is the only one that cannot be rejected as capturing the true cumulative distribution

of inflation. Furthermore, according to this test, the IaR model outperforms the “intercept

only” benchmark in all quantiles. Admittedly, the “CPI only” benchmark outperforms the

IaR model in some quantiles.

Panel B in Figure 12 shows that the IaR model outperforms the “intercept only” bench-

mark, as all the scores are positive. The model performs similarly to the “CPI only” bench-

mark, with a higher score at the ninetieth percentile and a lower score at the tenth percentile.

Figure 12 also presents the forecast performance of the Bank of Israel’s DSGE model

(Argov et al., 2012). The distribution of the DSGE forecast is symmetric with a fixed
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variance, so the quantiles are at a fixed distance from the median forecast.8 It should be

noted that the DSGE model was re-estimated in 2019, so its predictions are in-sample, which

gives it an advantage over the other models. Nonetheless, the two tests in Figure 12 show

that the IaR model does not substantially fall short of the DSGE model. In fact, it shows

better performance in some quantiles (in the PIT test, the IaR model improves upon the

DSGE mainly in the upper part of the distribution, and in the R-squared test, it improves

in the two extreme tails of the distribution).9

Altogether, both forecast performance tests support the use of the distribution generated

by the IaR model to forecast headline inflation.

B Additional Figures

8The forecast distribution in the DSGE model originates from the various shocks in the model. The
assumption in the model is that these shocks are normally distributed, which imposes normality on the
forecast distribution of inflation. As a result, the forecast is symmetric, and its standard deviation is fixed
and stems from the standard deviation of the shocks.

9The DSGE model is a quarterly model, so the number of observations on which we test its forecast
is relatively small (20 observations versus 60 of the IaR model and the restricted models). One of the
implications is that the confidence band presented in Figure 12.A is irrelevant for the DSGE model. However,
even with a confidence band fitted for the number of quarterly observations, the hypothesis that the DSGE
model captures the true inflation distribution is rejected.
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Figure 13: Quantile Regression Coefficients One and Twelve Months Ahead

Notes: Each column shows the estimated coefficients from the quantile regression (1) for one or twelve
months ahead. For the one-month horizon, the dependent variable in Equation (1) is replaced by monthly
inflation in annual terms. Red bars mark coefficients that are significant at 10% (see Koenker, 1994).
Dashed lines show the OLS estimates of Equation (1).
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Figure 14: Out-of-Sample Forecasts

A. Inflation at Risk

B. “CPI Only”

C. “Intercept Only”

Notes: Each panel shows the median out-of-sample forecast of the respective model estimated twelve
months before the marked date (black line), together with bands covering 80% and 50% of the forecast
distribution (grey bands). The red line depicts realized CPI inflation.
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