Bank of Israel Research Department

Forecasting CPI Inflation Components with
Hierarchical Recurrent Neural Networks*

Oren Barkan?, Jonathan Benchimol®, Itamar Caspi®,
Allon Hammer®, Noam Koenigstein®

Discussion Paper 2021.06
March 2021

Bank of Israel - http://www.boi.orq.il

* The views expressed in this paper are those of the authors and do not necessarily
represent the views of the Bank of Israel. We thank the participants at the Bank
of Israel Research Department seminar for their helpful comments.

& Ariel University.

Bank of Israel, Jerusalem, Israel.

Tel Aviv University. Corresponding authors: allonhammer@gmail.com (Allon

Hammer), noamk@tauex.tau.ac.il (Noam Koenigstein).

Any views expressed in the Discussion Paper Series are those of the authors
and do not necessarily reflect those of the Bank of Israel

91007 ©Y5WY9* 780 770 HNIWS 733 ,APNNN NVN
Research Department, Bank of Israel. POB 780, 91007 Jerusalem, Israel


http://www.boi.org.il/
mailto:allonhammer@gmail.com
mailto:noamk@tauex.tau.ac.il

Forecasting CPI Inflation Components with

Hierarchical Recurrent Neural Networks

Oren Barkan, Jonathan Benchimol, Itamar Caspi,
Allon Hammer, Noam Koenigstein

Abstract

We present a hierarchical architecture based on Recurrent Neural Networks (RNNs) for
predicting disaggregated inflation components of the Consumer Price Index (CPI). While the
majority of existing research is focused on predicting headline inflation, many economic and
financial institutions are interested in its partial disaggregated components. To this end, we
developed the novel Hierarchical Recurrent Neural Network (HRNN) model, which utilizes
information from higher levels in the CPI hierarchy to improve predictions at the more volatile
lower levels. Based on a large dataset from the US CPI-U index, our evaluations indicate that the
HRNN model significantly outperforms a vast array of well-known inflation prediction baselines.
Our methodology and results provide additional forecasting measures and possibilities to policy

and market makers on sectoral and component-specific price changes.
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1. Introduction

The Consumer Price Index (CPI) is a measure of the average change over time in the
prices paid by a representative consumer for a common basket of goods and services.
The CPI attempts to quantify and measure the average cost-of-living in a given country
by estimating the purchasing power of a single unit of currency. Therefore, it is the key
macroeconomic indicator for measuring inflation (or deflation). As such, the CPI is
a major driving force in the economy influencing a plethora of market dynamics. In
this work we present a novel model based on Recurrent Neural Networks (RNNs) for
forecasting disaggregated CPI inflation components.

The ability to accurately estimate the upcoming disaggregated inflation rate is of
high interest to policymakers and market players: Inflation forecasting is a critical tool in
adjusting monetary policies around the world (Friedman, 1961). Central banks predict
future inflation trends to justify interest rate decisions and to control and maintain
inflation around its target. Better understanding of upcoming inflation dynamics at the
component level can help inform and elucidate decision-makers for optimal monetary
policy (Ida, 2020). Another example is investors in fixed-income markets who wish to
estimate future sectorial inflation in order to foresee upcoming trends in discounted
real returns. Some private firms need to predict specific inflation components in order
to forecast price dynamics and mitigate risks accordingly. These are just a few examples
that emphasize the importance of disaggregated inflation forecasting.

Fiscal authorities may also need to forecast sectoral inflation dynamics to adjust social
security payments and assistance packages to specific industrial sectors. Government
and private debt levels and interest payments heavily depend on the expected path of
inflation. Our work suggests that hierarchical recurrent neural networks and machine
learning methods deserve more attention from policy and market makers.

In the US, the Consumer Price Index (CPI) is calculated and reported by the Bureau
of Labor Statistics (BLS). It represents the cost of a basket of goods and services across
the country on a monthly basis. The CPl is a hierarchical composite index system that
partitions all consumer goods and services into a hierarchy of increasingly detailed
categories. In the US, the top CPI headline is composed of eight major sector indexes:
(1) Housing, (2) Food and Beverages, (3) Medical Care, (4) Apparel, (5) Transportation,
(6) Energy, (7) Recreation, and (8) Other goods and services. Each sector is composed of
finer and finer sub-indexes until the entry levels or “leaves” are reached. These entry
level indexes represent concrete measurable products or services whose price levels
are being tracked. For example, the White Bread entry is classified under the following
eight-level hierarchy: All Items — Food and Beverages — Food at Home — Cereals and
Bakery Products — Cereals and Cereal Products — Bakery products — Bread — White Bread.

In the mid-1980s, many advanced economies began a major process of disinflation
known as the “great moderation”. This period was characterized by steady low inflation
and moderate yet steady economic growth (Faust and Wright, 2013). Later, the Global
Financial Crisis (GFC) of 2008, and more recently the economic effects of the Covid-
19 pandemic, were met with unprecedented monetary policies, potentially altering
the underlying inflation dynamics worldwide (Woodford, 2012; Gilchrist et al., 2017;
Bernanke et al., 2018). While economists still debate about the underlying forces that
drive inflation, all agree on the importance and value of contemporary inflation research,
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measurements and estimation. Moreover, the CPI is a composite index comprised of
an elaborate hierarchy of sub-indexes each with its own dynamics and driving forces.
Hence, in order to better understand inflation dynamics, it is useful to deconstruct the
CPI index and look into the specific disaggregated components “underneath” the main
headline.

Most existing inflation forecasting models attempt to predict the headline CPI while
implicitly assuming the same approach can be effectively applied to its disaggregated
components (Faust and Wright, 2013). However, as we show later, and in line with
the literature, the disaggregated components are more volatile and harder to predict.
Moreover, changes in the CPI components are more prevalent at the lower levels than
up at the main categories. As a result, lower hierarchy levels often have less historical
measurements for training modern machine learning algorithms.

In this work, we present the Hierarchical Recurrent Neural Network (HRNN) model-
a novel model based on Recurrent Neural Networks (RNNs) that utilizes the CPI’s
inherent hierarchy for improved predictions at its lower levels. HRNN is a hierarchical
arrangement of RNNs analogous to the CPI’s hierarchy. This architecture allows
for information to propagate from higher levels to lower levels in order to mitigate
volatility and information sparsity that otherwise impedes advanced machine learning
approaches. Hence, a key advantage of the HRNN model stems from its superiority at
inflation predictions at lower levels of the CPI hierarchy. Our evaluations indicate that
HRNN outperforms many existing baselines at inflation forecasting of different CPI
components below the top headline and across different time horizons.

Finally, our data and code are publicly available on GitHub" to enable reproducibility
and foster future evaluations of new methods. By doing so, we comply with the call to
make data and algorithms more open and transparent to the community (Makridakis
et al., 2020, 2018).

The remainder of the paper is organized as follows. Section 2 presents a literature
review of baseline inflation forecasting models and machine learning models. Section 3
explains recurrent neural networks methodologies. Our novel Hierarchical Recurrent
Neural Networks (HRNN) model is presented in Section 4. Section 5 describes the
price data and data transformations. In Section 6, we present our results and compare
them to alternative approaches. Section 7 discusses our work and its potential policy
implications. Finally, we conclude in Section 8 and present a few additional tables and
tigures in the Appendix.

2. Related Work

While inflation forecasting is a challenging task of high importance, the literature
indicates that significant improvement upon basic time-series models and heuristics
is hard to achieve. Indeed, Atkeson et al. (2001) found that forecasts based on simple
averages of past inflation were more accurate than all other alternatives, including the
canonical Phillips curve and other forms of structural models. Similarly, Stock and
Watson (2007, 2010) provide empirical evidence for the superiority of univariate models
in forecasting inflation during the great moderation period (1985 to 2007) and during

1The code and data are available at https://github.com/AllonHammer/CPI_HRNN.git
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the recovery ensuing the GFC. More recently, Faust and Wright (2013) conducted an
extensive survey of inflation forecasting methods and found that a simple “glide path”
prediction from the current inflation rate performs as well as model-based forecasts for
long-run inflation rates and often outperforms them.

Recently, an increasing amount of effort has been directed towards the application
of machine learning models for inflation forecasting. For example, Medeiros et al.
(2021) compared inflation forecasting with several machine learning models such as
lasso regression, random forests, and deep neural networks. However, Medeiros
et al. (2021) focused mostly on using exogenous features such as cash and credit
availability, online prices, housing prices, consumer data, exchange rates, and interest
rates. When exogenous features are considered, the emphasis shifts from learning the
endogenous time series patterns to effectively extracting the predictive information
from the exogenous features. In contrast to Medeiros et al. (2021), we preclude the use
of any exogenous features and focus on harnessing the internal patterns of the CPI
series. Moreover, unlike previous works that dealt with estimating the main headline,
this work is focused on predicting the disaggregated indexes that comprise the CPI.

In general, machine learning methods flourish where data is found in abundance
and many training examples are available. Unfortunately, this is not the case with CPI
inflation data. While a large amount of relevant exogenous features exist, there are only
twelve monthly readings annually. Hence, the amount of available training examples
is limited. Furthermore, Stock and Watson (2007) show that statistics such as average
inflation rate, conditional volatility, and persistency levels are shifting in time. Hence,
inflation is a non-stationary process which further limits the amount of relevant historical
data points.

Coulombe et al. (2020), Mullainathan and Spiess (2017), Athey and Susan (2018)
and Chakraborty and Joseph (2017) present comprehensive surveys of general machine
learning applications in economics. Here,we do not attempt to cover the plethora of
research employing machine learning for economic forecasting. Instead, in the next
section we focus on models that apply neural networks to CPI forecasting.

This research joins several studies that apply neural network methods to the specific
task of inflation forecasting: Nakamura (2005) employed a simple feed-forward network
to predict quarterly CPI headline values. A special emphasis is placed on early stopping
methodologies in order to prevent over-fitting. Their evaluations are based on US CPI
data during 1978-2003 and predictions are compared against several autoregressive (AR)
baselines. Presented in Section 6, our evaluations confirm the findings of Nakamura
(2005), that a fully connected network is indeed effective at predicting the headline CPI.
However, when the CPI components are considered, we show that the model in this
work demonstrates superior accuracy across all time horizons.

Choudhary and Haider (2012) used several neural networks to forecast monthly
inflation rates in 28 countries in the Organisation for Economic Cooperation and
Development (OECD). Their findings showed that on average, neural network models
were superior in 45% of the countries while simple AR models of order one (AR1)
performed better in 23% of the countries. They also proposed to arithmetically combine
an ensemble of multiple networks for further accuracy.

Chen et al. (2001) explored semi-parametric nonlinear autoregressive models with
exogenous variables (NLARX) based on neural networks. Their investigation covered a
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comparison of different nonlinear activation functions such as the Sigmoid activation,
radial basis activation, and Ridgelet activation.

McAdam and McNelis (2005) explored Thick Neural Network models that represent
“trimmed mean” forecasts from several models. By combining the network with a linear
Phillips Curve model, they predict the CPI for the US, Japan, and Europe at different
levels.

In contrast to the aforementioned works, our model predicts monthly CPI values
in all hierarchy levels. We utilize information patterns from higher levels of the CPI
hierarchy in order to assist the predictions at lower levels. Such predictions are more
challenging due to the inherent noise and information sparsity at the lower levels.
Moreover, the HRNN model in this work is better equipped to harness sequential
patterns in the data by employing Recurrent Neural Networks. Finally, we exclude the use
of exogenous variables and rely solely on historical CPI data to focus on internal CPI
patterns modeling.

Zahara et al. (2020) employed long-short term memory (LSTM) units for CPI
predictions based on exogenous daily online prices of 34 food staples in Indonesia. They
apply Recurrent Neural Networks (RNNs) to forecast the CPI but did not compare their
approach to alternative baselines nor make their data and code available for further
evaluation and reproducibility purposes.

Almosova and Andresen (2019) employed LSTMs for inflation forecasting and
compared them to multiple baselines such as autoregressive models, random walk
models, seasonal autoregressive models, Markov switching models, and fully-connected
neural networks. At all time horizons, the root mean squared forecast of their LSTM
model was approximately one-third of the random walk model and significantly more
accurate than the other baselines.

As we explain in Section 3.3, our model makes use of Gated Recurrent Networks
(GRUs), which are similar to LSTMs. Unlike Zahara et al. (2020) and Almosova and
Andresen (2019), a key contribution of our model stems from its ability to propagate
useful information from higher levels in the hierarchy down to the nodes at lower levels.
By ignoring the hierarchical relations between the different CPI components, our model
is reduced to a set of simple unrelated GRUs. This set-up is similar to Almosova and
Andresen (2019), as the difference between LSTMs and GRUs is negligible. In Section 6,
we perform an ablation study in which HRNN ignores the hierarchical relations and is
reduced to a collection of independent GRUs, similar to the model in Almosova and
Andresen (2019). Our evaluations indicate that this approach is not optimal at any level
of the CPI hierarchy.

3. Recurrent Neural Networks

Before describing our novel HRNN model, we discuss different Recurrent Neural
Networks (RNNs) approaches. RNNs are neural networks that model sequences of data
in which each value is assumed to be dependent on previous values. Specifically, RNNs
are feed-forward networks augmented by implementing a feedback loop (Mandic and
Chambers, 2001). As such, RNNs introduce a notion of time to the standard feed-
forward neural networks and excel at modelling temporal dynamic behavior (Chung
et al., 2014). Some RNN units retain an internal memory state from previous time
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Figure 1. An illustration of a basic RNN unit.
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Each line carries an entire vector, from the output of one node to the inputs of others. The yellow box is a learned
neural network layer.

steps representing an arbitrarily long context window. Many RNN implementations
were proposed and studied in the past, a comprehensive review and comparison of the
different RNN architectures is available in Lipton et al. (2015); Chung et al. (2014). In
this section, we will cover the three most popular units: Basic RNN, Long-Short Time
Memory (LSTM), and Gated Recurrent Unit (GRU).

3.1. Basic Recurrent Neural Networks

Let {x;}]_, be the model’s input time series consisting of T samples. Similarly, let
{s¢}]_, be the model’s results consisting of T samples of time series. Namely, the model’s
input at t is x;, and its output (prediction) is s;. The following set of equations defines a
basic RNN unit:

s; =tanh (x;u + s;—1w + b), (1)
where u, w and b are the model’s parameters and tanh(x) = ii;g:i is the hyperbolic
tangent function. Namely, the model’s output from the previous period s;-1 is used
as an additional input to the model at time ¢, along with the current input x;. The
linear combination x;u + s;—1w + b is plug into a hyperbolic tangent activation function
allowing the unit to model nonlinear relations between inputs and outputs. Different
implementations may employ other activation functions, e.g., the Sigmoid function,
some logistic functions, or a Rectified Linear Unit (ReLU) function (Ramachandran
et al., 2017). Figure 1 depicts an illustration of a basic RNN unit.

3.2. Long Short Term Memory Networks

Basic RNNs suffer from the “short-term memory” problem: they utilize data from
recent history to forecast, but if a sequence is long enough, it cannot carry relevant
information from earlier periods to later ones, e.g., relevant patterns from the same
month in previous years. Long Short Term Memory networks (LSTMs) deal with this
“short-term memory” problem by introducing gates that enable the preservation of
relevant “long-term memory” and combining it with the most recent data (Hochreiter
and Schmidhuber, 1997). The introduction of LSTMs paved the way for significant
strides forward in various fields such as natural language processing, speech recognition,
robot control, and more (Yu et al., 2019).



An LSTM unit has the ability to “memorize” or “forget” information through the
use of a special memory cell state, carefully regulated by three gates: an input gate, a
forget gate, and an output gate. The gates regulate the flow of information into and out of
the memory cell state. An LSTM unit is defined by the following set of equations:

i =o(xiu' +siqw' +bY),
f :a(xtuf + spqwf +bf),

0 =o(xu® + sp_qw’ + b°),

(2)
¢ =tanh (x;u‘ + s;_qw* + b°),
ct =f Xcp1 +1XC,
st =0 X tanh(cy),
where o(x) = 2= is the sigmoid or logistic activation function. u/, w’ and b’ are the

learned parameters that control the input gate i, uf, wf and b/ are the learned parameters
that control the forget gate f, and u°, w® and b° are the learned parameters that control
the output gate 0. C is the new candidate activation for the cell state determined by the
parameters u¢, w and b°. The cell state itself c; is updated by the linear combination
¢t = f X cp—1 +1 X C, where c;_1 is its previous value of the cell state. The input gate
i determines which parts of the candidate ¢ should be used to modify the memory
cell state, and the forget gate f determines which parts of the previous memory c;_4
should be discarded. Finally, the recently updated cell state c; is “squashed” through a
nonlinear hyperbolic tangent and the output gate o determines which parts of it should
be presented in the output s;. Figure 2 depicts an illustration of an LSTM unit.

Figure 2. An illustration of an LSTM Unit.
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Each line carries an entire vector, from the output of one node to the inputs of others. The pink circles represent
point-wise operations, while the yellow boxes are learned neural network layers. Lines merging denote concatenation,
while a line forking denotes its content being copied and the copies going to different locations.



3.3. Gated Recurrent Unit

A Gated Recurrent Unit (GRU) improves the LSTM unit by dropping the cell state
in favor of a more simplified unit that requires less learnable parameters (Dey and
Salemt, 2017). GRU employs only two gates instead of three: an update gate and a reset
gate. Using fewer parameters, GRUs are faster and more efficient, especially when
training data is limited, such as in the case of inflation predictions and particularly
disaggregated inflation components.

A GRU unit is defined by the following set of equations:

z =o(xu® + s;_qw* + b?),
r=o(xu” +siqw” +b"),

v =tanh (x;u” + (s;_1 X r)w® + b?),
st =z X0+ (1 —2)s4-1,

(3)

where u*, w* and b* are the learned parameters that control the update gate z, and
u", w" and b" are the learned parameters that control the reset gate r. The candidate
activation v is a function of the input x; and the previous output s;_1, and is controlled
by the learned parameters: u”, w” and b”. Finally, the output s; is a combination of
the candidate activation v and the previous state s;_1 controlled by the update gate z.
Figure 2 depicts an illustration of a GRU unit.

GRUs enable the “memorization” of relevant information patterns with significantly
fewer parameters when compared to LSTMs. Hence, GRUs constitute the basic unit for
our novel HRNN model described in Section 4.

Figure 3. An illustration of a GRU unit.
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4. Hierarchical Recurrent Neural Networks

The disaggregated components at lower levels of the CPI hierarchy (e.g., newspapers,
medical care products, etc.) suffer from missing data as well as higher volatility in
change rates. HRNN exhibits a network graph in which each node is associated with
a Recurrent Neural Network (RNN) unit that models the inflation rate of a specific
(sub)-index (node) in the “full” CPI hierarchy. HRNN's unique architecture allows it
to propagate information from RNN nodes in higher levels to lower levels in the CPI
hierarchy, coarse to fine-grained, via a chain of hierarchical informative priors over
the RNNs’ parameters. As presented in Section 6, this unique property of HRNN is
materialized in better predictions for nodes at lower levels of the hierarchy.

4.1. Model Formulation

Let 7 = {n}) | be an enumeration of the nodes in the CPI hierarchy graph. In
addition, we define 7, € I as the parent node of the node n. For example, if the nodes
n =5 and n = 19 represent the indexes of tomatoes and vegetables respectively, then
15 = 19 i.e. the parent node of tomatoes is vegetables.

For each node n € 7, we denote by x} € R the observed random variable that
represents the CPI value of the node n at timestamp t € N. We further denote
X = (x},...,x}), where 1 <t < T, and T, is the last timestamp for node n. Let
g : R"™ x () — R be a parametric function representing an RNN node in the hierarchy.
Specifically, R™ is the space of parameters that control the RNN unit, € is the input
time series space, and the function g predicts a scalar value for the next value of the
input series. Hence, our goal is to learn the parameters 0, € R™ s.t. for X|' € Q,
9(0,, X]') = xi,Yn€l,and1 <t <T,.

We proceed by assuming a Gaussian error on g’s predictions and receive the
following expression for the likelihood of the observed time series:

T, T
p(X2100,T0) = | | PGFIXy, 00, 10) = | [ NG 9000, X1), 730), 4)
t=1 t:l

where 7;;! € R is the variance of ¢’s errors.

Next, we define a hierarchical network of normal priors over the nodes” parameters
that attach each node’s parameters with those of its parent node. The hierarchical priors
follow:

p(ei’l |67Tn/ TQH) = N(Gi’l/ eﬂn/ 7531)/ (5)

where 7g, is a configurable precision parameter that determines the “strength” of the
relation between node n’s parameters and the parameters of its parent ;. Higher
values of 79, strengthen the attachment between 0,, and its prior O, .

The precision parameter 79, can be seen as a global hyper-parameter of the model
to be optimized via cross-validation. However, different nodes in CPI the hierarchy
have varying degrees of correlation with their parent nodes. Hence, the value of 7¢, in
HRNN is given by:

t6, = ¢, (6)



where «a is a hyper-parameter and C,, = p(X I X;n” ) is the Pearson correlation coefficient
between the time series of n and its parent ;. '

Importantly, Equation (5) describes a novel prior relationship between the parameters
of anode and its parent in the hierarchy that “grows” increasingly stronger according to
the historical correlation between the two series. This ensures that a child node 7 is kept
close to its parent node 7, in terms of squared Euclidean distance in the parameters
space, especially if they are highly correlated. Note that in the case of the root node
(the headline CPI), nt;, does not exist and hence we set a normal non-informative
regularization prior with zero mean and unit variance.

Let us now denote the aggregation of all series from all levels by X = {XJ },ez.
Similarly, we denote by 0 = {0, },cr and T = {7, },cr the aggregation of all the RNN
parameters and precision parameters from all levels, respectively. Note that X (the data)
is observed, O are unobserved learned variables, and T are determined by Equation 6.
The hyper-parameter a from Equation 6 is set by a cross-validation procedure.

With these definitions at hand, we now proceed with the Bayes rule. From Equation 4
and Equation 5, we extract the posterior probability:

p(X|6, T)p(6)

pOIX,T) ===
T, (7)
[ 1] [~V 90, X, iy [ [N (B0 0, 71D
nel t=1 nel

HRNN optimization follows a Maximum A-Posteriori (MAP) approach. Namely, we
wish to find optimal parameter values 0" such that:

0" = argmaxlogp(0|X, T). 8)
0

Note that the objective in Equation (8) depends on the parametric function g. HRNN
is a general framework that can use any RNN, e.g., Simple RNN, LSTM, GRU, etc. In this
work, we chose g to be a scalar GRU because GRUs are capable of long-term memory
but with fewer parameters than LSTMs. Hence, each node # is associated with a GRU
with its own parameters: 0, = [uj, u,, u;, w;, wy,w;,b;,b;,b;]. Then, g(6,,X}) is
computed by ¢ successive applications of the GRU to x} with 1 < i <t according to
Equation (3). Finally, the HRNN optimization proceeds with stochastic gradient ascent
over the objective in Equation (8). Figure 4 depicts an illustration of the entire HRNN
architecture.

4.2. HRNN Inference

In machine learning, after the model’s parameters have been estimated in the training
process, it can be applied to make predictions in a process known as inference. In our
case, equipped with the MAP estimate 0%, inference with the HRNN model is achieved
as follows: Given a sequence of historical CPI values th for node n, we predict the
next CPI value vy}, = g(6y, X}'), as explained in Section 4.1. This type of prediction
is for next month’s CPI, namely, horizon /& = 0. In this work, we also test the ability
of the model to perform predictions for further horizons h € {0, .., 8}. The h-horizon
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Figure 4. An illustration of the full HRNN model.
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predictions are obtained in a recursive manner, whereby each predicted value v’ is fed
back as an input for the prediction of y', ;. As expected, Section 6 shows that forecasting
accuracy gradually degrades as horizon h increases.

5. Dataset

This work is based on monthly CPI data released by the US Bureau of Labor and
Statistics (BLS). In what follows, we discuss the dataset’s characteristics and our pre-
processing procedures. For the sake of reproducibility, the final version of the processed
data is available in our HRNN code.

5.1. The US Consumer Price Index

The official CPI of each month is released by the BLS several days into the following
month. The price tags are collected in 75 urban areas throughout the US from about
24,000 retail and service establishments. The housing and rent rates are collected from
about 50,000 landlords and tenants across the country. The BLS releases two different
measurements according to urban demographics:

1. The CPI-U represents the CPI for urban consumers and covers approximately
93% of the total population. According to the Consumer Expenditure Survey, the
CPI items and their relative weights are derived from their estimated expenditure.
These items and their weights are updated each year in January.

2. The CPI-W represents the CPI for urban wage earners and clerical workers and
covers about 29% of the population. This index is focused on households with
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at least 50 percent of income coming from clerical or wage-paying jobs, and at
least one of the household’s earners must have been employed for at least 70% of
the year. CPI-W reflects changes in the cost of benefits, as well as future contract
obligations.

In this work, we focus on CPI-U, as it is generally considered the best measure for the
average cost of living in the US. Monthly CPI-U data per product is generally available
from January 1994. Our samples thus span from January 1994 to March 2019. Note
that throughout the years, new indexes were added, and some indexes have been
omitted. Consequently, hierarchies can change, which contributes to the challenge of
our exercise.

5.2. The CPI Hierarchy

The CPI-U is an eight-level deep hierarchy comprising 424 different nodes (indexes).
Level o represents the headline CPI, or the aggregated index of all components. Anindex
at any level is associated with a weight between o0-100, which represents its contribution
to the headline CPI at level o. Level 1 consists of the 8 main aggregated categories or
sectors: (1) “Food and Beverages”, (2) “Housing”, (3) “Apparel”, (4) “Transportation”,
(5) “Medical Care”, (6) “Recreation”, (7) “Education and Communication”, and (8)
“Other Goods and Services”. Mid-levels (2-5) consist of more specific aggregations e.g.,
“Energy Commodities”, “Household Insurance”, etc. The lower levels (6-8) consists of
fine-grained indexes, e.g., “Apples”, “Bacon and Related Products”, “Eyeglasses and
Eye Care”, “Tires”, “Airline fares”, etc. Tables 7 and 8 (in Appendix A) depict the first
three hierarchies of the CPI (levels 0-2).

5.3. Data Preparation

We used publicly available data from the BLS website®>. However, the BLS releases
hierarchical data on a monthly basis in separate files. Hence, separate monthly files
from January 1994 until March 2019 were processed and aggregated to create a single
repository. Moreover, the format of these files has changed over the years (e.g., txt, pdf,
and csv formats were all in use) and a significant effort was made in order to parse the
changing formats from different time periods.

The hierarchical CPI data is released in terms of monthly index values. We
transformed the CPI values to monthly logarithmic change rates as follows: We denote
by x; the CPI value (of any node) at month ¢. The logarithmic change rate at month ¢ is
denoted by rate(t) and given by:

rate(t) = 100 X log (i) . (9)
Xt-1
Unless otherwise mentioned, the remainder of the paper relates to monthly logarithmic
change rates as in Equation (9).
We split the data into a training dataset and a test dataset as follows: For each time
series, we kept the first (early in time) 70% of the measurements for the training dataset.

2Taken from: www.bls.gov/cpi
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Table 1: Descriptive Statistics

Data set # Monthly Mean SID Min  Max #of Avg. Measurements
Measurements Indexes per Index

Headline Only 303 0.18 033 -1.93 122 1 303
Level 1 6742 0.17 096 -18.61 11.32 34 198.29
Level 2 6879 0.12 1.10 -19.60 16.81 46 149.54
Level 3 7885 0.17 1.31 -34.23 16.37 51 121.31
Level 4 7403 0.08 197 -35.00 =28.17 58 107.89
Level 5 10809 0.01 1.43 -21.04 242.50 92 87.90
Level 6 7752 0.09 149 -11.71 16.52 85 86.13
Level 7 4037 0.11 1.53 -11.90 9.45 50 80.74
Level 8 595 0.08 156 -527 5.02 7 85.00
Full Hierarchy 52405 0.10 1.75 -35.00 242.50 424 123.31

Notes: General statistics of the headline CPI and CPI-U for each level in the hierarchy and the full
hierarchy of indexes.

The remaining 30% of the measurements were removed from the training dataset and
used to form the test dataset. The training dataset was used to train the HRNN model as
well as the other baselines. The test dataset was used for evaluations. The results in
Section 6 are based on this split.

Table 1 summarizes the number of data points and general statistics of the CPI time
series after applying Equation (9). When comparing the headline CPI with the full
hierarchy, we see that at lower levels the standard deviation (STD) is significantly higher
and the dynamic range is larger, implying much more volatility. The average number of
measurements per index decreases at the lower levels of the hierarchy as not all indexes
are available for the entire period.

Figure 5 depicts box plots of the CPI change rate distributions at different levels.
The boxes depict the median value and the upper 75’th and lower 25’th percentiles.
The whiskers indicate the overall minimum and maximum rates. Figure 5 further
emphasizes that as we go down the CPI hierarchy, the change rates are more volatile.

High dynamic range, high standard deviation, and less training data are all indicators
of the difficulty of making predictions inside the hierarchy. Based on this information,
we can expect that the disaggregated component predictions inside the hierarchy will
be more difficult than the headline.

Finally, Figure 6 depicts a box plot of the CPI change rate distribution for different
sectors. We notice that some sectors (e.g., apparel and energy) suffer from higher
volatility than others. As expected, predictions for these sectors will be more difficult.

6. Evaluation and Results

We evaluate HRNN and compare it with well-known baselines for inflation prediction
as well as some alternative machine learning approaches. In what follows, we use the
following notation: Let x; be the CPI log-change rate at month t. We consider models
for X; - an estimate for x; based on historical values. Additionally, we denote by ¢; the
random estimation error at time t. In all cases, the h-horizon forecasts were generated
by recursively iterating the one-step forecasts forward. Hyper-parameters were set
through a 10-fold cross-validation procedure.
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Figure 5. Box plots of monthly inflation rate per hierarchy level.
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6.1. Baseline Models
We compare HRNN with the following CPI prediction baselines:

1. Autoregression (AR)- The AR(p) estimates £; based on the previous p months as
follows: X; = ag + (Zle acl-xt_i) + &;, where {ai}fzo are the model’s parameters.

2. Phillips Curve (PC) - A PC(p) is an extension of AR(p) that considers the
unemployment rate u; at month t in CPI forecasting model such as: #; =
ap + (Zip:l a;X¢—;) + Pus-1 + €, where {ai}f , and p are the model’s parameters.
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3. Vector Autoregression (VAR) - The VAR(p) model is a multivariate generalization
of AR(p). Itis frequently used when two or more time series may comove. VAR(p)
estimates next month’s values of k time series based on their historical values
from the previous p months as follows: }A(t =Ap+ (Zle A;X;_;)+ €;, where X; are
the last p values from k different time series at month ¢, and )A(t are the model’s
estimates of these values, {Ai}fzo are a (k X k) matrices of parameters, and ¢; is a
vector of error terms.

4. Random Walk (RW) - We consider the RW(p) model of Atkeson et al. (2001).
RW(p) is a simple, yet effective, model that predicts next month’s CPI as an average
of the last p months by: ; = % Zle Xi—i + &

5. Auto Regression in Gap (AR-GAP) - The AR-GAP model subtracts a fixed
inflation trend before predicting the inflation in gap (Faust and Wright, 2013).
Inflation gap is defined as g; = x; — 1t, where 7; is the inflation trend at time
t which represents a slowly-varying local mean. This trend value is estimated
using RW(p) as follows: 1; = % Zle x¢—i. By accounting for the local inflation
trend 7;, the model attempts to increase stationarity in g; and estimate it by
g = ap + Zle aigi—i + €, where {ai}fzo are the model’s parameters. Finally,
7; is added back to §; to achieve the forecast for the final inflation prediction:
Xt =gt + T¢.

6. Logistic Smooth Transition Auto Regressive Model (LSTAR)- The LSTAR is an
extension of AR that allows for changes in the model parameters according to a
transition variable F(t;c, ). LSTAR(p, c, y) consists of two AR(p) components
that describe two trends in the data (high and low), and a nonlinear transition
function that links them as follows:

p p
R = (ao + Z ozixt_i) (1-F(t;y,c)+ (ﬁo + Z ﬁixt—i) F(t;y,c)+e, (10
i=1 i=1

where F (t;y,¢) = m is a first-order logistic transition function that depends
on the location parameter ¢, and a smoothing parameter . The location parameter
c can be interpreted as the threshold between the two AR(p) regimes, in the sense
that the logistic function changes monotonically from o to 1 as t increases and
balances symmetrically at t = ¢ (van Dijk et al., 2002). The model’s parameters are

{ai}fzo and {ﬁi}fzo, while y and ¢ are hyper-parameters.

6.2. Ablation Models

In order to demonstrate the specific contributions of each component of the HRNN
model, we conducted an ablation study that considered “simpler” machine learning
alternatives to HRNN as follows:

1. Single (S-GRU)- The S-GRU(p) is a single GRU unit that receives the last p values
as inputs in order to predict the next value. In GRU(p), a single GRU is used for
all the time series that comprise the CPI hierarchy. This baseline utilizes all the
benefits of a GRU but assumes that the different components of the CPI behave
similarly and a single unit is sufficient to model all the nodes.
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2. Independent GRUs (I-GRUs)- In I-GRUs(p), we trained a different GRU(p) unit
tfor each CPI node. The S-GRU and I-GRU approaches represent two extremes:
The first attempts to model all the CPI nodes with a single model, while the second
treats each node separately. I-GRUs(p) is equivalent to a variant of HRNN that
ignores the hierarchy by setting the precision parameter 79, = 0; Vn € 1. Namely,
this is a simple variant of HRNN that trains independent GRUs, one for each
index in the hierarchy.

3. K-Nearest Neighbors GRU (KNN-GRU)- In order to demonstrate the contribu-
tion of the hierarchical structure of HRNN, we devised the KNN-GRU(p) baseline.
KNN-GRU attempts to utilize information from multiple Pearson-correlated CPI
nodes without employing the hierarchical informative priors. Hence, KNN-GRU
presents a “simpler” alternative to HRNN that replaces the hierarchical structure
with elementary vector GRUs as follows: First, the k nearest neighbors of each
CPI node were found using the Pearson correlation measure. Then, separate
vector GRU(p) units were trained for each CPI aggregate along its k most similar
nodes using the last p values of node n and its k-nearest nodes. By doing so, the
KNN-GRU(p) baseline was able to utilize both the benefits of GRU units together
with relevant information that comes from correlated nodes.

4. Fully Connected Neural Network (FC)- The FC(p) is based on a fully connected
neural network with one hidden layer and a ReLU activation. The output layer
employs no activation in order to formulate as a regression problem with a squared
loss optimization. The inputs to the FC(p) model are the last p samples and the
output is the predicted value for the next month.

Note that we have also experimented with “deeper” networks of more than one layer,
but those did not yield a noticeable improvement. We attribute this to the relatively low
number of training examples and features inherent to the CPI prediction problem.

6.3. Evaluation Metrics

We report results in terms of three evaluation metrics:

1. Root Mean Squared Error (RMSE)- The RMSE is given by:

T
1 A
RMSE = || = ; (xi — #1)%, (11)

where x; are the monthly change rate for month ¢, and X; are the corresponding
predictions.

2. Pearson Correlation Coefficient- The Pearson correlation coefficient ¢ is given

by:
_ COV(Xr, X)
B ox, O}A( !

¢ (12)
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where COV (Xr, }A(T) is the covariance between the series of actual values and the
predictions, and o, O, are the standard deviations of the actual values and the
predictions, respectively.

. Distance Correlation Coefficient- In contrast to Pearson correlation, which detects
linear association between two random variables, the distance correlation measure
can also detect nonlinear correlations. The distance correlation is derived from
the distance covariance and distance variance measures. Given Xt and }A(T, an
actual and predicted CPI values across T months respectively, we define two

corresponding distance matrices DX and DX as follows:

D]?,(k =|lx; - xkll, j,k=1,2,...,T,

X e , (13)
D]?’(k =% = Xkll,  j,k=1,2,...,T,
where j, k =1,2,...,T represent time steps, and || - ||2 is the Euclidean norm. The
matrices DX and DX are centralized into DX and DX according to:
A X _f X 4 DX
D. _D] 2 D] - D7 + D7, »
e © o o - 14
X b'§ X X X
D D], -D;.-Dy+D".,

where D ]X and D ])A{ are the mean value of the the j’th row of DX and DX respectively.
D?}E and D.}é are the mean value of the the k’th column of DX and DX respectively,
and DX.. and DX.. are the means of all cells in DX and DX respectively.

The distance co-variance is the arithmetic mean of the element-wise product of

X and DX:

T T
dCov(D*,D¥) = %ZZD D (15)
j=1 k=1

Similarly, the distance variance is defined by:

avar (D¥) = acov(D*,0%) = 5 3" (B3,

ik
1 2 (16)
dVar (D ( ) dCov(DX, D%) = = Z (D]?fk)
jk
Finally, the distance correlation coefficient r, is given by:
» dCOV(XT, XT) - (17)
\/ d Var(Xt) x dVar(Xr)

6.4. Results

The HRNN model is unique in its ability to utilize information from higher levels in

the CPI hierarchy in order to make predictions at lower levels. Therefore, we provide
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results for each level of the CPI hierarchy - overall 424 disaggregated indexes belonging
to 8 different hierarchies. For the sake of completion, we also provide results for the
headline CPI index by itself. It is important to note that in this case, the HRNN model
cannot utilize its hierarchical mechanism and has no advantage over the alternatives.
The results are reported for horizons o,1,2,3,4 and 8 months in Table 6. Following
Faust and Wright (2013) and Aparicio and Bertolotto (2020), our results present the
Diebold and Mariano (1995) tests, RMSEs, and Pearson correlation measures to assess
one model’s forecasting ability and quality over another. We also present in our results
the Distance correlation to assess nonlinear comovements. The HRINN(4) model is
significantly better than the other models according to Diebold and Mariano (1995)
statistical significance tests, which all yielded to p-value<0.05 for all results.>

Table 2: Average Results on Disaggregated CPI Components

Model RMSE per horizon Correlation
Name* AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

AR(1) 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.05
AR(2) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR(3) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR-GAP(3) 1.00 1.00 1.00 1.00 1.00 1.00  0.08 0.06
AR-GAP(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
RW(4) 1.00 1.00 1.00 1.00 1.00 1.00 -0.05 -0.04
Phillips(4) 1.00 1.00 1.00 1.00 0.98 1.00 -0.05 -0.04
VAR(1) 1.03 1.03 1.04 1.03 1.04 1.05 0.04 0.03
VAR(2) 1.03 1.03 1.04 1.03 1.04 1.05 0.06 0.03
VAR(3) 1.03 1.03 1.03 1.03 1.04 1.05 0.06 0.03
VAR(4) 1.02 1.03 1.03 1.03 1.03 1.04 0.07 0.04
LSTAR(p=4,c =2,y =0.3) 1.04 1.07 1.07 1.07 1.08 1.1  0.09 0.07
FC(4) 1.03 1.03 1.04 1.04 1.04 1.05 0.12 0.09
HRNN(1) 0.81 0.82 0.85 0.85 0.84 0.86 0.18 0.14
HRNN(2) 0.81 0.82 0.84 0.84 0.84 0.86 0.18 0.14
HRNN(3) 0.81 0.82 0.84 0.84 0.84 086 0.19 0.15
HRNN(g) 0.80 0.81 0.83 0.83 0.83 0.85 0.20 0.16
S-GRU(4) 1.02 1.06 1.06 1.07 1.04 1.12  0.10 0.08
I-GRU(4) 0.83 0.84 0.85 0.85 0.86 0.89 o0.17 0.13
KNN-GRU(1) 0.91 0.93 0.96 0.97 0.96 0.96 0.19 0.15
KNN-GRU(2) 0.90 0.93 0.95 0.97 0.96 0.96 0.20 0.15
KNN-GRU(3) 0.89 0.92 0.95 0.96 0.96 0.95 0.20 0.15
KNN-GRU(4) 0.89 0.91 0.95 0.95 0.95 0.95 0.20 0.15
Notes: Average results across all 424 inflation indexes that make up the headline CPI. The RMSE results
are relative to the AR(1) model and normalized according to its results, i.e., %ﬂ

Table 6 depicts the average results from all the disaggregated indexes in the CPI
hierarchy. The results are relative to the AR(1) models and normalized according to:

—II{{A&EEEMW’. In HRNN we set @ = 1.5, and the V-GRU(p) models were based on k = 5
AR(1)

nearest neighbors. Table 6 shows that different versions of the HRNN model repeatedly

3For clarity purposes, we did not report the Diebold and Mariano (1995) results, which are available
upon request.
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Table 3: CPI Headline Only

Model RMSE per horizon Correlation
Name* AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

AR(1) 1.00 1.00 1.00 1.00 1.00 1.00 0.29 0.22
AR(2) 1.00 0.97 0.99 1.01 1.00 0.98 0.32 0.24
AR(3) 1.00 0.98 0.98 1.00 0.96 0.97 0.33 0.25
AR(4) 1.00 0.95 0.95 0.96 0.93 0.96 0.33 0.25
AR-GAP(3) 1.00 0.98 0.98 1.00 0.96 0.97 0.33 0.25
AR-GAP(4) 0.99 0.95 0.95 0.96 0.92 0.96 0.33 0.25
RW(3) 1.05 0.98 0.99 1.01 0.97 0.96 -0.08 -0.06
Phillips(4) 0.93 0.94 0.95 0.95 0.93 0.95 0.33 0.25
FC(g) 0.92 0.94 0.94 0.96 0.93 0.94 0.33 0.25
LSTAR(p =4,c =2,y =0.3) 0.98 0.95 0.95 0.97 0.95 0.95 0.32 0.24
HRNN(4) / GRU(4) 1.02 1.01 1.00 1.03 1.00 1.00 0.16 0.12

Notes: Prediction results for the CPI headline index alone. The RMSE results are relative to the AR(1)

. . . . RMSEMode
model and normalized according to its results, i.e., Wm

outperform the alternatives at any horizon. Notably, HRNN is superior to I-GRU, which
emphasizes the importance of using hierarchical information and the superiority of
HRNN over regular GRUs. Additionally, the HRNN is also superior to the different
KNN-GRU models, which emphasizes the specific way HRNN employs informative
priors based on the CPI hierarchy.

For the sake of completion, we also provide results for predictions at the head of
the CPI index. Table 3 summarizes these results. When considering only the headline,
the hierarchical mechanism of HRNN is redundant and the model is similar to a single
GRU(4) unit. It appears we do not observe any advantage for the use of GRUs in this
case when compared to a simple AR model. However, we see an advantage of simple
deep learning models such as fully connected networks (FC) that outperform the more
“traditional” approaches including LSTAR.

Table 4: HRNN(4) results at different levels of the CPI hierarchy with respect to AR(1)

Hierarchy RMSE per horizon Correlation
Level AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

Level 1 0.98 0.99 1.00 1.00 1.00 1.00 0.23 0.21
Level 2 0.92 0.92 0.94 0.94 0.94 0.96 0.22 0.20
Level 3 0.81 0.82 0.83 0.84 0.84 0.85 022 0.19
Level 4 0.8 0.81 0.82 0.82 0.82 0.83 o0.11 0.09
Level 5 078 08 0.8 079 08 082 o021 0.17
Level 6 079 0.8 0.79 0.81 0.83 0.83 0.1y 0.13
Level 7 0.75 076 0.8 0.81 0.8 0.83 o0.15 0.12
Level 8 0.73 0.74 0.79 0.79 0.79 0.81  0.08 0.07

Notes: The RMSE results are relative to the AR(1) model and normalized according to its results, i.e.,
RI\ASEMMMI
RMSEAR(l) :

Table 4 depicts the results of HRNN(4), the best model, across all hierarchies (1-8,
excluding the headline). Results are averaged over all disaggregated components and
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Table 5: HRNN(4) results for different CPI sectors with respect to AR(1)

Industry RMSE per horizon Correlation
Sector AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

Apparel 0.86 0.87 0.87 0.88 0.87 09 o0.17 0.12
Energy 0.97 0.98 0.98 0.98 0.98 0.98 o0.11 0.08
Food and beverages 0.77 0.79 0.78 0.78 0.79 0.81 0.1 0.08
Housing 0.82 0.82 0.83 0.84 0.83 0.85 0.23 0.17
Medical care 0.80 0.83 0.82 0.82 0.82 0.84 0.22 0.17
Recreation 0.99 0.99 1.00 1.00 1.00 1.00 0.08 0.06
Services 0.92 0.92 0.93 0.93 0.93 0.94 0.21 0.16
Transportation 0.88 0.9 0.9 091 0.92 0.93 0.23 0.17

Notes: The RMSE results are relative to the AR(1) model and normalized according to its results, i.e.,
RMSEmodel
RMSEAR(l) :

normalized by the AR(1) model RMSE as before. As evident from Table 4, the HRNN
model shows the best relative performance at the lower levels of the hierarchy, where
the CPI indexes are more volatile and the hierarchical priors are most effective.

Table 5 compares the results of HRNN(4) across different sectors. Again, the results
are averaged over all disaggregated components and presented as normalized gains
with respect to the AR(1) model as before. The best improvement of HRNN appears to
be in the Food and Beverages group. This can be explained by the fact that the Food
and Beverages sub-hierarchy is the deepest and most elaborate hierarchy in the CPI tree.
When the hierarchy is deeper and more elaborate, HRNN advantages are emphasized.

Finally, Figure 7 depicts specific examples of three disaggregated indexes: Gasoline,
Medical Care, and Newspapers. These indexes are located down at the bottom of the
CPI hierarchy and suffer from relatively high volatility. Figure 7 presents next month
predictions on the test period only (i.e., months that were not used to train the model).
The HRNN(4) model seems to track and predict the trends of the real indexes accurately.
Figure 8 and Figure 9 in Appendix A depict additional examples for a large variety of
disaggregated CPI components.

6.5. In the Wake of the GFC

In order to study the GFC effect on HRNN'’s performance, we removed the data from
2008 onward and repeated the experiment of Table 6, using only the data from 1997 up
to 2008. The results of this experiment are summarized in Table 6. In terms of RMSE,
the gains of HRNN in Table 6 vary from 0.85 up to 0.8, in contrast to Table 6 where
the gains vary from 0.89 to 0.95, revealing that during the turmoil of the GFC, when
the demand for reliable and precise forecasting tools is enhanced, HRNN's forecasting
abilities remain robust. In fact, its forecasting superiority was somewhat enhanced
during the GFC when compared to the AR(1) baseline.

Table 6 also provides a glimpse into HRNN’s nonlinearity at work: While the
Distance correlation for the HRNN model is around 0.16 over the full sample (Table 6),
it lowers to 0.12 over the sample excluding the GFC. Hence, the correlation between
HRNN's forecasts and the true changes in the CPI was actually enhanced during the
GFC. This may further explain HRNN’s superiority during the GFC.
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Figure 7. Examples of HRNN(4) predictions for disaggregated indexes.
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Table 6: Average Results on Disaggregated CPI Components Prior to The GFC

Model RMSE per horizon Correlation
Name* AR(1)=1.00 (at horizon=0)

0 1 2 3 4 8 Pearson Distance

AR(1) 1.00 1.00 1.00 1.00 1.00 1.00  0.07 0.05
AR(2) 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.06
AR(3) 1.00 1.00 1.00 1.00 1.00 1.00  0.09 0.07
AR(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR-GAP(3) 1.00 1.00 1.00 1.00 1.00 1.00 0.09 0.07
AR-GAP(4) 1.00 1.00 1.00 1.00 1.00 1.00 0.10 0.07
RW(4) 1.00 1.00 1.00 1.00 1.00 1.00 -0.03 -0.03
Phillips(4) 1.00 1.00 0.99 0.99 1.00 1.00 -0.02 -0.02
VAR(1) 1.04 1.04 1.04 1.05 1.05 1.06 0.04 0.03
VAR(2) 1.03 1.04 1.04 1.04 1.05 1.05 0.05 0.03
VAR(3) 1.03 1.03 1.03 1.04 1.04 1.05 0.06 0.03
VAR(4) 1.02 1.03 1.03 1.03 1.03 1.04 0.06 0.04
LSTAR(p=4,c =2,y =0.3) 1.05 1.06 1.05 1.08 1.09 1.10 0.08 0.06
FC(4) 0.99 0.99 1.00 1.00 1.02 1.05 0.11 0.08
HRNN(1) 0.90 0.92 0.93 0.95 0.95 0.97 0.15 0.11
HRNN(2) 0.90 0.92 0.92 0.95 0.95 0.97 0.15 0.11
HRNN(3) 0.90 0.92 0.93 0.94 0.95 0.96 0.15 0.11
HRNN(g) 0.89 0.91 0.91 0.93 0.93 0.95 0.16 0.12
S-GRU(4) 1.05 1.09 1.09 1.10 1.09 1.10  0.09 0.07
I-GRU(4) 0.93 0.94 0.94 0.93 0.94 0.98 0.15 0.11
KNN-GRU(1) 0.94 0.96 0.96 0.96 0.97 0.98 0.10 0.07
KNN-GRU(2) 0.94 0.96 0.95 0.96 0.97 0.98 0.11 0.08
KNN-GRU(3) 0.93 0.96 0.95 0.96 0.96 0.98 0.11 0.08
KNN-GRU(4) 0.93 0.96 0.96 0.95 0.96 0.97 0.12 0.09

Notes: Average results across all 424 inflation indexes that make up the headline CPI. In contrast to

Table 6, here we focus on results up to the GFC of 2008. The RMSE results are relative to the AR(1) model
RMSEpoder

and normalized according to its results, i.e., ¢ MSEars)

7. Policy Implications

Policymakers already have at their disposal an extended set of predictive tools aimed
at forecasting the headline inflation: survey data, expert forecasts, inflation swaps,
economic and econometric models, etc. However, policy institutions lack models or
data to assist CPI components’ forecasting, which are key for a deeper understanding
of underlying dynamics. Understanding disaggregated inflation trends may point to
the nature of inflation pressures, their transitory factors (seasonal factors, energy, etc.),
and other factors reflected in the headline inflation that influences market-makers and
the conduct of monetary policy, among other decision-makers. Hence, our approach
is geared towards CPI forecasting at the disaggregated level based on endogenous
historical data. Indeed, our procedure’s hierarchical characteristic is not targeted at
forecasting the headline inflation, even if we perform well (Ibarra, 2012).

The business cycle plays an important role in inflation dynamics, in particular
through specific product classes. Some CPlinflation dynamics are driven by components
unrelated to central bank policy objectives i.e., food, and energy prices, for instance.
Forecasting disaggregated CPI makes it possible to identify the sources and features
of inflation pressures in the economy more accurately, thereby improving monetary
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response efficiency. Indeed, forecasting sectoral inflation may improve the optimization
problem faced by the central bank (Ida, 2020).

While similar headline inflation forecasts may correspond to various underlying
economic factors, a disaggregated perspective allows understanding and analyzing the
decomposition of these inflation forecasts at the sectoral or component level. Instead of
disaggregating inflation to forecast the headline inflation (Stock and Watson, 2019), our
approach allows policy and market makers to forecast specific sector and component
prices, where information is less available: almost no component or sectoral-specific
survey forecasts, expert forecast, or market-based forecasts exist. A central bank for
example, could use such modeling features to avoid components affecting the inflation
rate (military, food, cigarettes, and energy) that are unrelated to their primary inflation
objectives. Economic policy recommendations at the sectoral level should also benefit
from component-specific inflation forecasting, and market makers can better guide and
tune their investment strategies (Swinkels, 2018).

Traditional approaches for inflation forecasting often employ a theoretical or a linear
model which inescapably bias estimation and forecasting. Our novel approach may
overcome the usual drawbacks which bias traditional forecasts, giving policy makers
new insights from a “different angle”. Our structural approach includes explanatory
variables with hierarchy in the disaggregated forecasts mitigating measurement errors at
the component levels. Our model structure also attenuates component-specific residuals
derived from each level and sector, which may improve forecasting performance. For
all these reasons, we believe that HRNN can become a valuable tool for asset managers,
policy institutions, and market makers lacking component-specific price forecasts critical
to their decision processes.

The current debate on the Phillips curve have given rise to new models and data-
based approaches aimed at checking the validity of the relation between inflation
and unemployment and the changes in its dynamics, i.e., the Phillips curve flattening.
However, the debate among academia and policymakers is still ongoing (Hooper
et al., 2020). Disaggregating inflation is useful to understanding the microeconomic
drivers of the Phillips curve (Luengo-Prado et al., 2018), and our method provides an
efficient approach for inflation forecasting that may assist in better understanding this
debate—how headline and sectoral inflation forecast dynamics are decomposed among
components and levels of prices.

Last but not least, HRNN models have shown to perform well during the GFC
compared to other models, which may be attributed to their nonlinear characteristics.
This may prove beneficial to policymakers and private investors, who require reliable
and precise forecasting tools during a crisis and high volatility periods, where linear or
more standard models cannot adapt.

8. Conclusion

The HRNN model we presented to forecast disaggregated inflation changes signifi-
cantly outperforms all the baseline models at predicting sectoral and component-specific
prices. The model’s hierarchical nature enables information propagation from higher
levels in the inflation hierarchy to improve predictions for the disaggregated components
at lower levels. Extensive evaluations on the US CPI-U index against a wide array
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of baselines demonstrate the HRNN model’s superiority, especially at lower levels of
the CPI hierarchy. The applications for policymakers that aim to forecast the relevant
components of inflation and market makers interested in specific sectoral prices to
guide their investment policies are promising. It is also crucial for central banks to
easily identify and forecast the source of inflation pressures in the economy and for
fixed-income investors to forecast sectoral-specific prices, while little information is
available about level- or component-specific prices.
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Appendix A Additional Tables and Figures

Table 7: Indexes Level 0 And 1

Level Index Parent

0 All items -

1 All items less energy All items
1 All items less food All items
1 All items less food and energy All items
1 All items less food and shelter All items
1 All items less food, shelter, and energy All items
1 All items less food, shelter, energy, and used cars and trucks All items
1 All items less homeowners costs All items
1 All items less medical care All items
1 All items less shelter All items
1 Apparel All items
1 Apparel less footwear All items
1 Commodities All items
1 Commodities less food All items
1 Durables All items
1 Education and communication All items
1 Energy All items
1 Entertainment All items
1 Food All items
1 Food and beverages All items
1 Fuels and utilities All items
1 Household furnishings and operations All items
1 Housing All items
1 Medical care All items
1 Nondurables All items
1 Nondurables less food All items
1 Nondurables less food and apparel All items
1 Other goods and services All items
1 Other services All items
1 Recreation All items
1 Services All items
1 Services less medical care services All items
1 Services less rent of shelter All items
1 Transportation All items
1 Utilities and public transportation All items

Note: Levels and Parents of Indexes might change through time
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Table 8: Indexes Level 2

—
[¢)
<
o
—_—

Index

Parent

N NDNDNDNDNNNNNNNNNNDNNNNNNNDNNDNDNNNNNNDNDNDNDNNNNNNNNDNNDNNNN

All items less food and energy
Apparel commodities

Apparel services

Commodities less food

Commodities less food and beverages

Commodities less food and energy commodities
Commodities less food, energy, and used cars and trucks

Communication

Domestically produced farm food
Education

Energy commodities

Energy services

Entertainment commodities
Entertainment services

Food

Food at home

Food away from home

Footwear

Fuels and utilities

Homeowners costs

Household energy

Household furnishings and operations
Infants” and toddlers” apparel
Medical care commodities

Medical care services

Men’s and boys’ apparel
Nondurables less food
Nondurables less food and apparel
Nondurables less food and beverages
Nondurables less food, beverages, and apparel
Other services

Personal and educational expenses
Personal care

Pets, pet products and services
Photography

Private transportation

Public transportation

Rent of shelter

Services less energy services
Services less medical care services
Services less rent of shelter

Shelter

Tobacco and smoking products
Transportation services

Video and audio

Women'’s and girls” apparel

All items less energy
Apparel

Apparel

Commodities
Commodities

All items less food and energy
Commodities

Education and communication
Food and beverages
Education and communication
Energy

Energy

Entertainment
Entertainment

Food and beverages
Food

Food

Apparel

Housing

Housing

Fuels and utilities
Housing

Apparel

Medical care

Medical care

Apparel

Nondurables
Nondurables
Nondurables
Nondurables

Services

Other goods and services
Other goods and services
Recreation

Recreation
Transportation
Transportation

Services

All items less food and energy
Services

Services

Housing

Other goods and services
Services

Recreation

Apparel

Note: Levels and Parents of Indexes have changed over the years.
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Figure 8. Additional Examples of HRNN(4) predictions for disaggregated indexes
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Figures 1-12, indexes were selected from different hierarchies and sectors

(c) Bacon and related products

Bacon and related products

Monthly Rate

2017-03  2017-06 201709 01800 201812 2016.03

(f) Financial services

Financial services

Monthly Rate
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(i) Haircuts and other personal care services
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(1) Household operations

Household operations
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